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SUMMARY 
A numerical algorithm to determine the impingement of an axisymmetric free jet upon a curved deflector is 
presented. The problem is considered within the potential flow theory with the allowance of gravity and 
surface tension effects. The primary dependent variable is the Stokes streamfunction, which is approximated 
through finite elements using the isoparametric Hermite Zienkiewicz element. To find the correct position of 
the free boundaries, a trial-and-error method is employed which amounts to solving a boundary value 
problem (BVP) for the Stokes streamfunction at each iteration step. An efficient method is proposed to solve 
this BVP. The algorithm to find the correct position of the free boundaries is tested by computing the 
impingement upon an infinite disc and a hemispherical deflector. To confirm the correctness of the solution, 
each problem has been solved using several different mesh gradings. A comparison between the Zienkiewicz 
and the other standard Co finite elements is also given. 
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1. INTRODUCTION 

In the present paper we shall perform a numerical analysis of a steady axisymmetric potential 
flow which, after exiting a duct, impinges upon a curved deflector. Since the position of the 
deflected jet is unknown in advance, we are dealing with a free boundary value problem (FBVP). 
The problem under consideration has two free surfaces; one emanates from the deflector tip and 
constitutes the so-called outer free surface; the other emanates from the end of the duct and 
constitutes the inner surface. It is the presence of two free surfaces that makes our problem 
particularly difficult. We remark that as a rule even free surface problems with one unknown 
boundary are anything but easy, especially if the position of the unknown boundary is correlated 
with another flow characteristic such as the discharge coefficient in flows over a weir or in 
spillway problems. As far as the author knows, there are no existence as well as uniqueness results 
for impingement problems with two free surfaces. However, it has recently been shown' that by 
using variational techniques, proponents of which are Alt, Caffarelli and Friedman, one can prove 
existence and uniqueness for the problem of impingement upon an infinite deflector. For a survey 
of a large class of different FBVPs together with pertinent numerical methods we refer to 
References 2-5. 

Since we are dealing with axisymmetric potential flow, we can formulate the problem either in 
terms of the potential function or in terms of the Stokes streamfunction. The decision as to which 
one to choose depends largely on which numerical method we would like to employ. It is known 
that for the method based on the variational principle the streamfunction formulation is 
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preferable (see e.g. Reference 6). On the other hand, it is deemed that for a trial-and-error method 
the potential function formulation is the only reasonable one (see e.g. Reference 7). This belief is 
based on the fact that the continuity equation in terms of the potential function corresponds to 
the Laplace equation in cylindrical co-ordinates. What makes this fact pervasive is that the 
equation rot v=O in terms of the Stokes streamfunction Y corresponds to a singular equation 

1 
Y,,+ Y,zz-- Y,, =o. r 

For plane flows there is of course no distinction between the two formulations and consequently 
both have been implemented in the numerical analysis of plane free surface flow problems (see e.g. 
References 8-1 1). In contrast, in three-dimensional problems there are no such possibilities and 
one has to use the velocity potential as the primary dependent variable (see e.g. Reference 12). We 
note that the adjustment of the free surface in the streamfunction formulation is somewhat easier 
than in the potential function formulation. This is why it would be preferable if we could also 
economically apply the streamfunction formulation in axisymmetric problems. We show now 
that this is indeed possible. 

First we note that a very simple transformation Y = (,/r)u transforms (1) into 

3 
4r2 u,rr + u,z* - - u = 0. 

The resulting equation is still singular, but as was shown by the author,I3 its singularity does not 
prevent one from using the standard Galerkin method. What is also important is that the 
transformed problem is a symmetric problem and thus admits a rather economical solution 
method. 

In what follows we shall treat our axisymmetric free surface problem in terms of the Stokes 
streamfunction. To determine the free surfaces, we apply a trial-and-error method based on the 
solution of the transformed problem (2). To solve the transformed problem on the assumed 
domain, we shall employ the finite element method with the isoparametric Hermite Zienkiewicz 
triangle. Regarding the choice of FEM, we would not like to enter into discussion of which 
particular method among BIM, FD, FEM and finite volume is preferable. We rather support the 
opinion that each of them has its merits and thus deserves to be included and evolved in any 
numerical package of great versatility. We hope that for all who share our opinion the 
presentation of the rarely used isoparametric Zienkiewicz triangle will be of some interest. 

2. STATEMENT OF THE PROBLEM 

Since the flow is assumed to be axisymmetric, it suffices to consider only the upper half of the 
meridian plane. With reference to Figure 1, an axisymmetric deflector BC is placed against a duct 
GG’. Fluid exiting from the duct impinges upon the deflector, curves back and thus forms a 
plume CDEF. The problem consists of locating the free surfaces CD and EFG together with other 
flow characteristics such as the drag on the deflector BC and the pressure distribution along the 
deflector. 

The fluid is assumed to be incompressible and inviscid. We further restrict our considerations 
to steady irrotational flow. Since we consider an axisymmetric problem, gravity is allowed to act 
only in the axial direction. In addition to gravity we allow also surface tension effects. We remark 
that it is known (see e.g. References 14-16) that the potential model is acceptable in impingement 
problems where inertia and surface tension forces are dominant over viscous fcrces. 
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Figure 1. Scheme of the flow domain 

In our paper we adopt the notation of capital letters R, 2, V and Y for quantities with physical 
dimensions and respective small letters for their dimensionless values. Here R and 2 stand for the 
radial and axial co-ordinates respectively, V is the magnitude of the velocity vector and Y is the 
volumetric flow rate. Their corresponding dimensionless values are obtained in the following 
manner. Let R ,  be the characteristic length, V,, the characteristic speed and let Q denotes the flux. 
Then we let r =  R/Ro, z= ZIR,, v =  VIV,, and $ =2nY’/Q. For the characteristic length we take 
the radius of the duct kH and for the characteristic speed the average speed V, at the inlet AH. 
Thus we have Q=nV,R; .  

As already mentioned, we formulate the problem in terms of the Stokes streamfunction $. By 
the introduction of the streamfunction the continuity equation is satisfied and thus it remains to 
solve the equation of irrotationality 

(3) 
1 

*,rr+*,zz-; * . r = o ,  

together with the appropriate boundary conditions. Since the axis of symmetry AB, the deflector 
BC, the duct HG and the free surfaces CD and EG are streamlines, we have 

$ = 0 along AB-BC-CD, (4) 

$= 1 along HG-GE. (5 )  

Along AH we may impose either a Dirichlet or a Neumann condition. If we specify a uniform inlet 
flow, we have 

a$ -=0 an along AH, 

where n is the unit outward normal vector. Alternatively we can specify a given velocity 
distribution along AH by imposing adequate Dirichlet values for $. Here we remark that it might 
be just as possible to consider the problem with a zero length of the duct HG. 
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At the outlet the situation is a little more complicated. Here we cannot impose, but only 
assume, the velocity distribution. It is common practice to assume a uniform flow along DE. In 
particular we employ 

or alternatively a corresponding Dirichlet value for $ along DE. 
If the flow domain were known, then we would have already specified all necessary boundary 

conditions. However, we are dealing with a free boundary problem and thus the unknown 
location of the free boundaries has to be somewhat compensated by additional boundary 
conditions along the free boundaries. In flow problems we usually have a constant pressure along 
free streamlines, which allows one to specify through the Bernoulli equation Neumann boundary 
conditions for $. In particular we have 

along a streamline at a point with co-ordinates (R, Z) and 

where values with subscript ‘a’ correspond to a pomt at the inlet and values with subscript ‘b’ 
correspond to a point at the free surface. We assume that the speed V, equals the characteristic 
speed V, and that Z, = 0. 

At the free surface the pressure is given by 

where Pa, is the ambient pressure, CJ is the coefficient of surface tension (see e.g. Reference 17) and 
R ,  and R, are the two principal radii of curvature. For a parametric positive-oriented dimen- 
sionless representation of the free boundary r = r(t), z = z ( t )  the principal radii are expressed in the 
following way: 

rl 1 y i  - f Z  
-= 
R ,  R , ( ~ z  + i 2 p 2  =K9 
1 --i r2 -= 

R ,  R,r( iz  +PZ)’12=R,‘  

After some manipulations we derive for the speed ub at the free boundary 

where P, = (Pa - P,,,,)/$p V i  is the pressure ratio, We = p V i  R,/a is the Weber number and 
Fr= V;/gR, is the Froude number. The above formula differs from a similar formula in 
Reference 15 in which the explicit reference to the pressure ratio is compensated by placing the 
reference point with the subscript ‘a’ at the end of the duct. 
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Thus from the boundary conditions (4) and (5)  and the dimensionless form of (8) we get the 
following additional boundary conditions along the free surfaces: 

-= a* -2rv along CD, 
an 

a* -=222u an along EG, 

where the speed v is calculated from (10). 

3. FREE SURFACE ADJUSTMENT 

As mentioned in the introduction, we are employing in our paper a trial-and-error method. We 
note that for many free surface problems there exists a much better method. This is especially true 
for problems for which there exists a transformation into an equivalent variational inequality 
problem. Usually such transformations exist for plane problems, where one can use the hodo- 
graph transformation (see e.g. Reference 18). We remark that for certain axially symmetric free 
surface problems there exists also the variational inequality formulation (see e.g. Reference 19). 
For other possible methods see e.g. References 20-23. It is worth making the observation that 
since free surface flow problems are non-linear problems, any numerical method involves some 
sort of iteration. 

The trial-and-error method is a very simple one. We begin with an assumed location of the free 
boundaries and then start the iteration in the following manner. Since we have tw6 boundary 
conditions on each free boundary, at the first step we use one of them together with the given 
boundary conditions on the fixed part of the boundary to solve the BVP for the governing 
equation. At the second step we use the remaining boundary conditions on the free boundaries to 
adjust the free boundaries. If the adjustment is sufficiently small, the iteration is terminated; 
otherwise we return to the first step. We remark that for some simple FBVPs the trial-and-error 
method leads to existence results (see e.g. Reference 24). 

In this paper, at the first step we use the Neumann boundary conditions (11) and (12) together 
with the boundary conditions on the fixed part of the boundary. After obtaining the solution of 
the BVP on the assumed domain, we determine the free boundary adjustments from the Dirichlet 
conditions 

$=O along CD, $=l  along EF (13) 
through the formula 

Here 6s stands for the shift in the normal direction on the free boundary, *o=O on CD and 
*o= 1 on EG. We might instead of the linear approximation (14) use a quadratic one. This is 
possible since the intrinsic equation of motion &/an= -xu,  where u stands for the speed and 
K for the curvature of a streamline in the meridian plane (see. e.g. Reference 25, Section 20), 
and (1 1) and (1 2) yield 

3=!2(LK). an2 an r 

We note that the quadratic approximation is justifiable only then when the assumed free 
boundary is almost a streamline. However, we have found the linear approximation (14) 



496 G. MEJAK 

satisfactory enough and thus we here present results obtained only on the basis of the linear 
approximation. 

In the plume region CDEF we have two free surfaces and consequently one might expect some 
special treatment as in Reference 15. However, in our numerical experiments we found that 
simultaneous adjustment of both free boundaries at each iterative step works very satisfactorily. 
In fact, in the case of alternating adjustments we observed oscillation behaviour. At this point we 
would like to emphasize that the above-mentioned method sometimes converged to physically 
unacceptable solutions, especially if the initial approximation of the free boundaries was poor. 
This physical unacceptance was demonstrated in an unacceptable shape of the outer free 
boundary and also in a pressure discontinuity at the tip of the deflector. We refer to the pressure 
discontinuity as the difference between the pressure imposed by (9) and the pressure calculated 
from the FEM solution. To redeem the situation, we employed a rotation of the plume region-a 
similar algorithm to that in Reference 16. In the case when the calculated pressure at C was 
greater than it should be we rotated the plume about C in a clockwise direction. For too low a 
pressure the plume was rotated in the opposite direction. As our numerical experiments showed, 
the improved iteration converges to a physically acceptable solution. We note that at each step of 
the iteration we perform either a rotation or a free surface adjustment. Of course, when the 
adjustment starts to redeem the pressure discrepancy we may dispense with the rotation. As we 
shall see later, use of the Zienkiewicz triangle element at this point enables us to impose the 
pressure continuity as the constraint. The exact amount of a rotation is of an empirical nature but 
can be programmed without difficulty. 

Since the adjustment of the free boundaries also shifts the points D and E, we have to redefine 
the boundary DE too. In order to justify the boundary condition (7), we take for the new curve 
DE a cubic curve orthogonal at its ends the free boundaries. 

4. SOLUTION OF THE GOVERNING EQUATION 

In the preceding section we found that at each iteration step we have to solve the boundary value 
problem 

where L2 is the flow domain, rl is the union of the arcs AB u BC u GH and Tz is the union 
CD u DE u EG u HA. The functions g1 and g2 are defined by 

0 along ABuBC, 

( 0  along DE u HA, 

( 2 r / [  l + P r - $ - ( ~ + $ ) + ~ z ]  along EG. 
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Since the BVP (15) has to be solved many times for different partial domains, its solution 
method must be a very economical one. In this paper we use the FEM, although it is quite 
possible that some other method might be even more economical. We note first that (15) after the 
discretization leads to an asymmetric system. However, a very simple transformation I,+ =(JY)u 
transforms (15) into 

3 u,rr + u,== -5 r - u = 0 in a, 
( J r ) u = g l  On r 1 7  (16) 

which obviously leads to a symmetric system. Of course, the transformation does not resolve the 
question of singularity; it even introduces an additional singular term into the boundary 
condition on T2. However, it was shown by the authori3 that the singularity of the transformed 
problem does not prevent one using the standard Galerkin procedure. In fact, it was shown that 
the corresponding linear forms 

+---+~Y-~UW 
a u a w  a u a w  
aY ay aZ aZ 

b(u, w ) = t l r z  ~ - ~ n p w d s  

are well defined and bounded on Hi,@) = (w: w E H'(R) and yw 1 = 0} . Here we have adopted 
the standard notation H1(SZ) for the Sobolev space and y for the trace operator (see e.g. Reference 
26). It follows from the boundedness of the forms that BVP (16) admits an equivalent variational 
problem. We note that there is no need to use any special elements near the axis since the 
boundary condition g1 = O  along the axis already handles the singularity in (16). This is to be 
compared with another approach where the solution JI is obtained by solving the variational 
problem 

for all admissible functions w; but here, since the flow domain also includes the symmetry axis, 
one must pay attention to the singular term Y - '  in the area integral. 

At each individual step of the iteration we have to solve the BVP (16) on a domain which is 
different from the domain at the previous step. This in principle involves the generation of a new 
mesh and assemblage of the global matrix at each iterative step. Of course there is no need to 
change the mesh over the whole domain. It suffices to divide the mesh into fixed and moving 
parts. This division after the first iteration step reduces the assemblage procedure only on 
elements from the moving part. In the determination of the fixed part we must take care that 
elements from the moving part during the iteration do not become too distorted or even overlap 
the fixed part. 

Needless to say, the mesh generation must be a universal one, i.e. it must work for almost all 
possible shapes of deflector. For this purpose we have found the following procedure especially 
convenient. We define an L-shaped domain as the reference domain. Its dimensions are deter- 
mined through the geometric parameters of the flow problem, i.e. the radius and length of the 
duct, the jet-to-deflector clearance and the length of the deflector and the plume. Then we 
generate a triangular mesh on the reference domain and conformally map the reference domain 
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together with its mesh onto the flow domain. To perform this mapping, we have to solve two 
Dirichlet BVPs for the Laplacian for r- and z-co-ordinates. We solve these BVPs with the FEM 
using linear elements. Employing these elements at this stage and the later use of the Zienkiewicz 
elements allow us to apply the same scheme for the mesh of the flow domain. It is worth noting 
that we have to assemble the stiffness matrix of the conformal mapping problem only once. All 
that we have to do at each later step is to perform two back-substitutions. The fixed and moving 
parts of the mesh are first determined on the reference domain and then mapped onto the flow 
domain. We note that for problems with abrupt separation at the deflector tip the conformal 
mapping of the L-shaped domain sometimes produces overlapping elements in the vicinity of the 
deflector tip. To overcome this problem, we relocate the nodes in the neighbourhood of the 
deflector tip. Since the location of the boundary and middle nodes is correct, it is easy to rectify 
the grid in the neighbourhood of the deflector tip. 

5. ISOPARAMETRIC HERMITE ELEMENT 

There are at least two reasons for employing Hermite elements. The first is related to the storage 
requirements and the second to the need to accurately calculate the pressure distribution along 
the deflector. We use isoparametric elements to fit the curved free boundaries accurately. 

As is known, the concentration of degrees of freedom at an individual node reduces the storage 
requirements for the global stiffness matrix. The Zienkiewicz triangle has three nodes and at each 
node three degrees of freedom, i.e. the value of a function and the values of its two partial 
derivatives (see e.g. Reference 27). The corresponding basis functions q:, qil and '%'i2 for the 
master element in the ( 5 ,  ?)-plane have the following properties: 

qtl (a i )  = 0, 

a a 
- 9:(ai)=- q'ko(ai)=O, a t  av 

a - Yl2(di) = 0, at 
Here i and k run over the set { 1, 2, 3) and hi denote the vertices of the master element. 

is transformed to an isoparametric element 0, in the computational 
space through a linear combination of the basis functions of the master element. Since we have 
nine basis functions, we have nine coefficients at our disposal. In particular, it follows from (17) 
that the transformation. 

The master element 

F :(C, ? ) H x = u k q : ( 5 ,  ?)+ r k l q : 1 ( e ,  ?) + tk2y:2 (5 ,  ?) (18) 
maps the master element onto a curved triangle with vertices ak and sides which are cubic curves 
and have at the vertices (see Figure 2) tangents t j ,  j =  1,2, . . . , 6  such that 

1 = 5 1 1 fS3,  t 2 = t 1 2 / s 2 ,  

t 5  A - 532/s29 

t 3  = ( r 2 2  - 5 2 1  ) fS1 9 

t6  = ( r 3  1 - 5 3 2  )Is1 t4 = - 5 2  I 1% 3 

Here s k  denotes the length of the side of the curved triangle which lies opposite the vertex a,. Of 
course the transformation (18) should be invertible and to this end it suffices to require that the 
element IR, is not too distorted. 
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a, 

P, t 
Figure 2. Isoparametric transformation 

The basis functions Y: and Y:, are on Q, defined through a composition of the inverse of the 
isoparametric mapping (1 8) and the master basis functions: 

YZ(X)  =Y,O(F- '(x)) YL' (x) = 9:l(F-'(x)) Y:,(x) = Yi,(F - ' (x)). 

It follows from (17) and (18) that the local interpolation operator n on C'(n,) is given by 
3 

nu= 1 [ u ( a k ) y t  + D u ( a k ) ( 5 k l y : 1  + ~ k Z Y : 2 ) 1 ,  
k =  1 

with the local degrees of freedom ak E R3 at the point uk given by 

a k = [ u ( a k ) ,  D u ( a k ) t k l ,  D u ( a k ) t k 2 1 T *  (19) 
Now, following the standard procedure, we obtain a symmetric algebraic system K,a = f,, 

where K, is the element stiffness 9 x 9 matrix, f, E R9 is the element load vector and U E  R9 is a 
vector of local degrees of freedom, a= [a:, a:, a:]=. At this point we observe that in order to 
assemble the element stiffness matrix K, into the global one, we need to express the local degrees 
of freedom ak in global degrees /3= [/?TI /3;, /?:IT, where 

It is easy to see that multiplication of the vector a by the matrix H, where 

H=( i2 8,). 
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O E R ~ * ~  and Hk is a 3 x 3 matrix 

0 

Hk= 5kl.l < k 1 , 2  , 
5 k 2 , l  t k Y . 2 )  

transforms the global degrees of freedom j? into the local one a. Thus we have KeHej?=fe. 
However, since the resulting algebraic system is not symmetric, we multiply it from the right by 
the transpose HT and thus the element contribution to the global system is 

HTK,H,j?= H: f,. 

In this way we obtained the symmetric algebraic system with the appropriate global degrees of 
freedom. 

It is worth noting that the use of Hermite elements also requires some care while imposing 
boundary conditions. In particular, at points where the Dirichlet boundary condition is imposed 
we have to specify not only a boundary value but also a value of the tangential derivative. Since in 
general tangential derivatives are not partial derivatives, we have to handle the imposed values of 
the tangential derivatives as constraints. In our FEM implementation we have taken into account 
these constraints through the use of the Lagrange multipliers. It is known that this may 
considerably impair the structure of the global matrix. To this end we inserted the equation with 
the Lagrange multiplier of the kth node into the global matrix next to the three Galerkin 
equations of the kth node. Of course, this involves some additional rearrangements, but as we 
have found, these paid off. We note also that at corner nodes with the Dirichlet boundary 
condition on both sides we have two directional derivatives, from which we can readily express 
both partial derivatives, and thus at such points there is no need to use Lagrange multipliers. 

As a final remark concerning the use of the Zienkiewicz Hermite triangle we would like to say 
something about the enumeration of the mesh modes. It is well known (see e.g. Reference 28) that 
the efficiency of the Cuthill-Mckee ordering algorithms improves with the number of interior and 
side nodes. Thus it is not surprising, as we have found, that the natural ordering, column by 
column in the horizontal part of the L-domain and row by row in the vertical part, gives much 
better results. We note also that the Zienkiewicz element can be fairly easily added to an existing 
FEM package. This is further enhanced by the fact that the Zienkiewicz element requires the 
same mesh discretization as the linear triangular element does. 

6. NUMERICAL RESULTS 

In this section we present numerical results for two axisymmetric free jet problems. For the test 
problem we took impingement upon an infinite disc and for the problem to show the applicability 
of our FEM code we chose impingement upon a hemispherical deflector. 

As recognized, there is no known analytical solution of axisymmetric free jet impingement 
problems. However, for the problem of impingement upon an infinite disc a theoretical value of 
the drag is known, namely n. In addition, this problem is relatively well represented in the 
literature, which is why we chose it as the test problem. Unfortunately, only S ~ h a c h ~ ~  gives the 
drag in his calculation, while Labus and DeWitt14 and Obee and DeWitt" give only the graph of 
the calculated free surface. In Table I we present our results for different boundary conditions at 
the outlet as well different mesh gradings. In all presented examples the iteration converged and 
terminated when the maximal error of computed values of the streamfunction along the free 
boundary was less than lo-'. We note that the comparison of the calculated drag with the exact 
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value rc is somewhat hindered by the fact that we actually calculated the impingement upon a 
finite disc of radius r = 4.5. However, the convergence and excellent agreement of the results for 
different meshes and outlet boundary conditions (see Table I) confirm that we found the ‘correct’ 
solution. 

In the table we refer to the storage requirement as the number of stored entries of the global 
stiffness matrix for the skyline storage schema (see e.g. Reference 30). The pressures in the table 
were calculated at the tip of the disc. Matrix calculations were performed in double-precision 
arithmetic, while for all other calculations we used single precision. All calculations on a relatively 
coarse mesh with a storage requirement below 8191 entries could be performed on a personal 
computer. The restriction up to 8191 entries is intimately correlated with the PC architecture, 
which allows a COMMON block only up to 64K. Nevertheless, with a PC it is possible to 
provide a larger computer with a fairly good initial approximation of the free boundaries. For 
calculations with a storage requirement above 8191 entries we used a VAX computer, model 750. 

We solved the same problem on a PC using linear, quadratic and cubic triangular elements and 
bilinear and biquadratic quadrilateral elements. Convergence of almost the same order was 
achieved for all these elements (see Table 11) and one could possibly conclude that it is sufficient to 

Table I. Impingement upon an infinite disc; P ,  = 0, We = Fr = 00 

Nodes Elements Storage Outlet BC Drag Pressure 

146 220 8157 Neumann 3.10295 0.00055 
213 324 11877 Dirichlet 3.10100 000057 
213 3 24 11835 Neumann 3.10129 000061 
306 478 19617 Dirichlet 3.10309 000055 
306 478 19575 Neumann 3.103 30 000060 

Table 11. Convergence in terms of the maximal error times lo5 of the streamfunction 
along the free boundary for free jet impingement upon an infinite disc using different 
isoparametric finite elements: T1 =linear, T2 =quadratic and T3 =cubic triangular 
elements; Q1 =bilinear and 4 2  =biquadratic quadrilateral elements; Z = Zienkiewicz 

element 

Iteration T1 T2 T3 Q1 Q2 Z 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

23476 
7868 
2975 
1121 
438 
169 
65 
25 
9 
4 
1 
0 

51432 
9617 
1825 
1485 
572 
218 

83 
32 
12 
5 
2 
1 

51310 
9676 
3923 
1509 
578 
22 1 
84 
32 
12 

5 
2 
0 

50361 
9203 
3994 
1653 
673 
227 
112 
45 
18 
7 
3 
1 

50912 
873 1 
3537 
1381 
530 
202 
77 
29 
11 
4 
2 
0 

25635 
8863 
3400 
1344 
504 
189 
63 
27 
10 
4 
1 
0 

Drag 2-08816 291150 308235 1-73021 308440 3.10400 
Nodes 146 327 27 1 97 327 146 
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Figure 3. Comparison of the positions of the free boundary for impingement upon an infinite disc for different finite 
elements. The disc is placed at z =4.0 and, to emphasize the difference, the r-co-ordinates of the data are multiplied by 10. 
Special symbols 0, V, A and 0 stand for nodal points of the solution obtained by using the Zienkiewicz, T1, T3 and Q1 

elements respectively. The curve without any special symbols is an initial approximation of the free boundary 

use linear elements. However, comparison of the computed values of the drag with the theoretical 
value and, moreover comparison of the imposed values of the normal derivatives with the 
computed normal derivatives of the solution along the free boundary revealed that the 
Zienkiewicz element gives the most reliable results. Comparing plots of the free boundary, we 
have found in this particular example that T2, Q2 and Zienkiewicz elements give almost the same 
position of the free boundary. The difference between this position and the positions obtained by 
using T1, T3 and Q1 elements is presented in Figure 3. 

We now proceed to the second example. Actually, in the development of our programme we 
proceeded with the calculation of impingement upon an elliptical deflector, a problem which was 
initiated by Schnurr et ~ 1 . ~ '  Since we later found that impingement upon a hemispherical 
deflector demanded much more, we took it as our representative example. This choice was further 
enhanced by the available comparison with the results from Reference 16. 

The geometry of the problem is determined by the following parameters (see Figure 1): the 
length of the duct HG ( l ) ,  the jet-to-deflector clearance G'B (d) and the radius of the sphere (ra). 
Since the variation of values of d, i d ,  P,, We and Fr is an objective of the design analysis of the 
hemispherical deflector and thus beyond the scope of our paper, we here present only the results 
for I = 2.0, d = 20, r, = 1-8, P,  = 0.5 and We = Fr = co. We note only that the numerical difficulty of 
the problem increases with a decrease of rd.  For a similar observation see also Reference 15. In 
fact, the smallest value of rd for which we solved the problem of impingement upon the 
hemispherical deflector was 1.5. 

To see whether the calculated solution is the correct one, we compare solutions of the same 
problem for different mesh sizes. In addition to this we compare the actual deflection angle Do 
with the deflection angle /3 calculated from the momentum equation. This calculation rests on the 
assumption of a linear velocity distribution along the outlet and on the assumption that the 
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calculated drag on the deflector equals the exact value. If these premises are correct, then for the 
exact position of the free boundaries Po should equal P. However, as our numerical experiments 
showed, a discrepancy between p and Po of up to 0.5" is acceptable. We note that the difference 
Ap = p - Po, which could be calculated at each iteration step, is only a measure of how accurate a 
solution is and that in principle it says nothing about the angle through which the plume should 
be rotated. 

In Table I11 we present results for the same problem using the Zienkiewicz element on different 
meshes. The initial approximation was determined in the following way. For the outer free 
boundary we took a straight line with the assumed deflection angle Po = 20". The points E and F 
were then calculated from the continuity equation and the inner free boundary was determined as 
a rational interpolation z = z ( r )  through the points E, F and G with a given asymptote. In 
obtaining the first result in Table 111, we started with the initial approximation. After 32 iterations 
we proceeded with a finer mesh and finally finished with 255 nodes, corresponding to 765 degrees 
of freedom. The total number of iterations was 42. In the table we also give the maximal difference 
A$ along the free streamlines between a required value $o and a computed value $. To check the 
accuracy of the solution, we repeated the calculations on a rather fine mesh consisting of 586 
elements. We present also plots of the finite element mesh with 408 elements and the streamlines 
of the solution in Figures 4 and 5 respectively. 

The calculated value of Po is to be compared with the result Po = 203" from Reference 16. This 
result is not particularly close to our value, but as we have found, both analyses give the same 
qualitative information on the thrust reversal characteristics of the hemispherical deflector. A 

Table 111. Impingement upon a hemispherical deflector; r, = 1.8, P, = 0.5, We = Fr = 00 

Nodes Elements Storage Po AS Drag A$ inner A$ outer 

132 198 7527 22.03 0.90 7,49204 0~00041 0.00026 
200 303 11247 22.09 047 750231 0~00007 0.00003 
255 408 19761 22.12 038 7.49189 000012 0oooO5 
357 586 29982 22.12 032 7.49350 0~00013 -0oooO5 

Figure 4. Finite element mesh for free jet impingement upon a hemispherical deflector 
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Figure 5. Streamlines of free jet impingement upon a hemispherical deflector 

possible reason for the quantitative differences between the two computations is that we have 
specified the pressure ratio. Moreover, we have also imposed the C’ smooth fit for the free 
boundaries. 

7. CONCLUSIONS 

In this paper we have presented the isoparametric Hermite Zienkiewicz element in calculations of 
free jet impingement problems. Using this element, we have found the following. 

Boundaries of the domain are approximated very accurately. Moreover, free boundaries can 
be approximated by a C’ smooth curve and one can even impose the smooth fit at points 
where a free boundary separates from the fixed boundary. 
Velocities are calculated more accurately than in other standard C o  finite elements. This 
allows one to use the momentum equation as the criterion of the correctness of the solution. 
To have such a criterion is very important, since as we have seen, convergence of the method 
is not always a guarantee of the correctness of the solution. 
At certain points on the boundary, in particular at the tip of the deflector and at the lip of the 
duct, it is possible to directly impose a value of the normal derivative and thus specify the 
pressure at these points. 
For the same number of degrees of freedom the half-bandwidth of the global stiffness matrix 
is considerably smaller than-for other standard Co finite elements. With this reduction in 
storage requirement it is possible to obtain relatively satisfactory results by using only a PC. 
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